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Approximately 97% of all global data passes 
through undersea cables: fiber-optic cores that 
facilitate emergency services, commerce, and 
military operations worldwide, and Ireland’s 
position off the mainland of Europe makes it so 75% 
of transatlantic cables travel through Irish waters. 

This presents an attractive opportunity for military 
or criminal activity. After an incident in November 
2024 where a Russian intelligence ship was spotted 
operating near undersea cables south of Cornwall, 
it became clear that Ireland does not have the 
appropriate Navy to protect against this 
vulnerability. Therefore, it’s critical to find a method 
to monitor Irish waters in a way that’s both low-cost 
and easy to maintain. 

Background 

[Figure #1] shows where particles are attracted. It 
shows where particles most distant got closest 
together in forward time, by determining which 
particles diverged the most in backward time. 

The FTLE fields computed from the galway coast’s 
data reveal some distinct patterns, but further 
analysis is required to fully interpret where the 
unstable and stable manifolds are at each point in 
time. Simple analysis shows that attracting LCSs 
form within the inner bay and areas with deep inner 
coastlines at certain times. 
[See Figure #2] 

This is consistent with “recirculation zones” of sorts 
seen at other coastlines, which are essentially 
circular currents caused by wind patterns combined 
with the shape of the coast. The vector field points 
steeply into these deep bays, and forms a circular 
pattern between the two in the center. 

We can also see from this data that repelling LCS 
appear near the bay mouth, and between 
recirculation zones. 
[See Figure #3] 
Fluid Flow Away from the Mouth of Bays 
At this time, we can see the vector field pointing 
away from the mouth of the bay. This is 
approximately 27 hours after the image from Figure 
1, which shows a similar pattern of attraction out 
and away from the bay mouths. 

Introduction 

Lagrangian Coherent Structures (LCS) describe how 
particles move in unsteady fluids. They are 
characterized by stable and unstable manifolds, 
which create “hills” and “valleys” that attract and 
repel particles, respectively. 

To calculate the LCS, we must first calculate the 
position of a passive particle moving through an 
unsteady fluid flow (we treat the ocean as a vector 
field). This produces the equation 

where u(x,t) represents the vector field. 

We use MatLab to map this grid of particles forward 
through time. Using this data, we create the Flow 
Map Jacobian, a map that tracks how much a 
particle is moving in the x and y directions. Using 
this we can identify places with a large Lyapunov 
exponent, essentially the maximum distance close 
particles spread through a flow field in a given time. 
These regions of high stretching and deformation 
help us identify where the unstable and stable 
manifolds are. To find the FTLE, we use the 
equation 

Regions with high FTLE values correspond to 
unstable manifolds and regions with low FTLE 
correspond to stable manifolds. 

This is all done using code and the LCS tool from the 
George Haller group. First we have MatLab 
interpolate data for time and space for particles in 
each x and y position. We then iterate through 
timesteps using the LCS tool. We compute the 
Cauchy-Green strain tensor eigenvalues/vectors for 
each hour (because the Connemara data is broken 
into hours) and calculate the FTLE field using the 
maximum eigenvalue. Then the system shows the 
FTLE contours with a grid of background vectors 
(and a land mask, to show the coast). 

Methods 

The high value of the vectors within and near the 
bay mouths indicate that they may be a hazardous 
landscape for the unmanned underwater vehicle to 
navigate closely to. Even though the attraction does 
cycle through alternate directions (which would 
push the vehicle in and out of each bay over the 
course of the day), the strength of the current and 
the proximity to rock means the vehicle may get 
damaged or simply wash up ashore. Care would 
need to be taken to ensure the vehicle remained 
appropriately distant from the coast. Additionally, 
the data indicates that 19:00-22:00 could be a daily 
optimal time for launch, as the vector field points 
away from shore at that time over the course of the 
three days. 

Conclusion Further computational analysis is required to fully 
understand and visualize the LCS structures within the 
Connemara data. Also, an additional set of code would be 
required to calculate the best path for an unmanned 
underwater vehicle to travel in order to get the most 
coverage off the western coast. The vehicle would need to 
utilize both attracting LCSs to move along the ocean’s 
surface and repelling LCSs to avoid drifting out to sea. 

Experimentation and testing would be necessary to 
determine the most accurate and least intensive way of 
generating potential routes. 

The 72 hour scale for this project is also relatively brief. 
Silbo’s team found an 8 day scale to be sufficient to provide 
a “detailed landscape” to guide the vehicle, and by looping 
that 8 days we could generate routes over any period of 
time. 

Further work 

Results 

Figure 1. Reverse Time FTLE, showing 
Attraction 

The goal of this project was to analyze available 
marine data to determine where to deploy AUV’s 
such that they would gather sensor data with a 
wide range of coverage off the Irish coast. 

To do this, we used ocean data from the 
Connemara 2D Oceanographic model for Galway 
Bay. This included Barotropic Sea Water velocity 
data in the latitude and longitude directions, as well 
as a time variable. 

Figure 2. Eddys and Particle 
Accumulation in the Direction of Inner 

Bays 

Figure 3: Fluid Flow Away from the 
Mouth of Bays 
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